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Abstract—The purpose of this paper is to present a general theory for analysis of the effect of initial
geometrical imperfections on vibration frequencies of undamped, conservatively loaded. linear
elastic beam and shell structures. The theory will be restricted to single mode vibrations with
imperfections in the same shape as the vibration modes. The mathematical tool is a perturbational
procedure developed with the aid of the principle of virtual work. The approach is illustrated by
applications to beams, plates and axisymmetric shell structures. The examples show that the
vibration frequency of these structures may be significantly raised or lowered due to imperfections.
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NOTATION

length and width of plate (Fig. 4)

arca of beam cross-section

coefficient for imperfection sensitivity of nonsymmetric structures fegns (29), (30))
coctlicients for imperfection sensitivity of symmetric structures [eqns (35), (36)]
cocflicient for vibrittion mode {eqns (29), (35)]

length of beam

flexural stiffness of plate feqn (63)]

Young's modulus

thickness of plate or conical shell

bending moment and axial foree in beam (functions of location)
bending moments in plate (functions of location)

in-plane stresses in plate (functions of location)

applied stress at plate

circumferential wave number for conical shell vibration mode
axial load at conical shell

equivalent foree in beam or plite

smatller end radius of conical shell (Fig. 6)

radius of gyration for beam

lurger end radius of conical shell (Fig. 6)

time coordinate

generalized displacements (vector function of location)
displacements (functions of location)

forced displacement of beam end (Fig. 2)

Cartesiun coordinate system

nonlincarity coefficient {egn (79)]

semi vertex angle for conical shell (Fig. 6)

generalized strains (vector function of location)

axial strain and curvature for beam (functions of location)
in-plane strains for plate (functions of location)

bending curvatures for plate (functions of locution)

load factors [eyn (79))

mass density and Poisson’s ratio

mode amplitude parameters

generalized stresses (vector function of location)

vibration frequency of imperfect and perfect structure
non-dimensional vibration frequency [eyqns (56), (79))

stress-strain operator [egns (6). (7)]
strain—-dcformation operators feqns (3) (5)]
mass-dcformation operator [eqn (2)]

lincar variational operator

Airy's stress function [eqn (64)]

differential operators [egn (64)]
differentiation with respect to a

double differentiation with respect to time
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Indices

() response of the perfect structure

) initial imperfection

(), =12 .. perturbation terms for the steady state

(). i=1.2.. . perturbation terms for the vibrating state

{1, common vibration and mode shape [egn (19)]
.00 two different states.

[. INTRODUCTION

In the present paper a theory for small vibrations of conservatively loaded imperfect
structures is developed using the methodology which has been applied to initial postbuckling
analysis by Budiansky (1966) and Fitch (1968) among others.

The initial postbuckling theory developed by Koiter (1967) and rederived by Budiansky
(1966) and Fitch (1968) using a virtual work approach is concerned with the effect of small
initial imperfections on the load-carrying capacity of structures. This postbuckling theory
has been used to investigate buckling. but is also capable of treating vibrations of structurcs
under static loads. Rehficld (1973) has treated farge amplitude vibrations of elastic structures
using a theory, which is analogous to the postbuckling theory, using Hamilton's principle.
However, static external loading and initial impertections are not taken into account. The
influence of imperfections on the nonlinear vibrations of beams and plates has recently been
investigated theoretically by Elishakofl er af. (1985), Hui and Leissa (1983), Hui (1984a)
and Ianko and Dickinson (1987u). respectively. Vibrations of imperfect plates have also
been investigated experimentally by Ianko and Dickinson (1987b). Furthermore, Liu and
Arbocz (1986a.b) have carried out a comprehensive study of the influence of initial geo-
metric imperfections on the non-lincar vibration behaviour of undamped and damped
circular cylindrical shells, and Elishakoft ¢r af. (1987) and Hui (1984b) have been inves-
tigating vibrations of imperfect cylindrical panels.

The present analysis deals with the influence of an initial geometrical imperfection on
the vibration frequency of a steucture, at a given conservative load. The imperfection is
assumed to be of the same shape as the vibration mode, as this is expected to represent the
most interesting case. The amplitude of the imperfection is included in the theory such that
also the imperfection sensitivity of the unloaded structure can be investigated. The notation
used 1 the present analysis s simifar to the notation used by Budiansky (1966), Fitch
(1968) and Rehfield (1973). Detailed information on the interpretiation of the notation in
case of axisymmetric shells can be found in Fitch (1968) and in Pedersen and Jensen (1976).

Two analytical examples, a beam and a rectangular plate, are used to illustrate the
theory. The results from the present approach are in accordance with previously published
results by Elishakoff er af. (1985) and Hui and Leissa (1983). A numerical example
concerning a truncated conical shell is used to demonstrate the application of computer-
bused imperfection sensitivity analysis.

2. GOVERNING EQUATIONS

In order to account for inertia forces, the equation of equilibrium may be formulated
as:

M) duta-de = q-ou. ()

Here u. £, o and q denote generalized displacements, strains, stresses and static loads,
respectively. The symbols can be thought of as denoting vector functions. The internal
virtual work of the stress ¢ through a strain variation de integrated over the entire structure
is denoted by ¢-de. In the same way the external virtual work of the load q. and the
virtual work of the d’Alembert forces — M (it), through a kinematic admissible displacement
variation Ju is denoted by — M(ii) - du and q- Ju, respectively. The overdot denotes differ-
entiation with respect to time and the generalized mass operator M is assumed linear in .
Equation (1) will here be employed for a “frozen-in-time picture™ of the structure at the
instant when the amplitude of the vibration attains its maximum. The mass operator is
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assumed to have the property that
M(u,) u, = M(u,)"u, (2)

for any kinematic admissible value of u, and u,.
For a perfect structure the strain may be written as

e=L,(a)+1L-(u), 3

where L, and L, are linear and quadratic functionals, respectively.
For a structure with an initial geometric imperfection @ the strain becomes

g=L(a+u)+iL.(0+uw) =L (@ —L.(0) = L (w+1L,(w)+ L, (6w, @
where the bilinear functional L,, is defined by
L,(u,+u) = L(u,)+2L,(u,,u,)+ L,(u). 5
The lincar stress—strain relation
¢ = H(g), (6)
is assumed to have the property that
Fi(e,) &, = Hie,) - e,. N

2.1. Vibration analysis

Let us now study the effects of initial imperfections and a conservative external loading
on the vibration behaviour of slender structures. We will use i to describe the deformations
of a perfect structure at a given load. It is well known that imperfections can initiate
deformation in a buckling mode, even if the load is well below the critical load for bifurcation
buckling. Provided that the structure has a small gecometrical imperfection with the mode
shape u,, and the amplitude &, the deformations will consist of a small static part with the
mode shape u,, and the amplitude &, in addition to 4. For larger imperfections the deflection
in the buckling mode is known to be nonlinear. For this reason a perturbational expansion
of the buckling deflections will be employed. Under free vibrations the deformations of a
perfect structure will furthermore include a part that varies harmonically in time with the
mode shape u,,, the amplitude ¢, and the circular frequency w. For the imperfect structure
the vibration mode will depend on the imperfection. In the following we will restrict the
analysis to small vibration amplitudes. Higher order terms of &, and terms, which vary with
frequencies that are multiples of «, are therefore neglected.

The initial geometric imperfections is taken as a combination of components u,,, u
uy,, . . . of the nonlinear deformations in the steady state :

pa3d

i=u,+ 8y + 8+ (8)
Then the perturbational expansion of the deformations can be written in the form

U=+ (&=, + (& —Euy + (& = Euy + - + & cos wifuy, + Eug +Eluy + ]

€)

where the nondimensional mode amplitude parameter ¢, is the sum of the amplitude &, of
the deformation in the mode u,, and the imperfection amplitude parameter ¢,

& =E+¢,. (10)
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The deformations are measured relative to the imperfect structure. The perturbational
expansion of the deformations are chosen 50 that the sum of the deformations and the
imperfection is an exponential expansion in the mode amplitude parameter £, We shall
later see that this expansion is consistent, since using eqns {3) and (6) the perturbational
expansions of the strains and the stresses are found to have the same form as (9).

The quantities u.,. u,.. u,, and u,, can be interpreted as corrections to u;, and u,, for
finite values of Z, and f in order to comply with boundary conditions etc. Thereby, the
effect of the amplitude ¢ of the imperfections on the total deflection u is described only
through the static buckling amplitude parameter J, and as seen later, also the frequency .
In order to make the expansions unique, the displacement components us,. W.. ... are
orthogonalized with respect to u,, and the displacement increments u.,. u,,. .. . are ortho-
gonalized with respect to u,

Mu,)u, =0 and Mu,)'u,=0 for =273, ... (1

without loss of generality,
Using eqn {4) the perturbational expansions of strains and stresses of the structurs
become

g B~ HIE — ST e (G —&NenF 0+ 3 cos atfe, 4S8 i eyt
(

- - o v i " s 2 o [ =l
G4 (5, ~E)a G =g (& = ENa o+ eoswla, e e+ ]

&
i

where

E= L@+ L0
g,=Li(w )+ L, (Guy,)
gs, = LiQun)+ Lo(iuy) + 1 a(uy)
ey, = L (u )+ L (u,,u)+ L, (1uy)
g = Li{u, Y+ L, {0, u,)
gs, = L{u 3+ L {ouy Y+ Ly (uy, uy)
g = Li(u )+ L (. uy)+ Lo (us w )+ L (doug,), (H

From egn (6) the stresses of the structure are found as
= HE: 6,=He) and o, = Heg,) =123 ... (14)

Itis from these quations that we can see that the initial geometric imperfection (8) together
with the perturbational expansion of the deformations (9) fits with the perturbational
cxpansion of the strains and the stresses (12).
Using eqns (4) and (9). the strain variation dg associated with a small displacement
increment du of u becomes
dg = L {(du)+ L, (@ du)+ L, (u. duy+ (S, -5 Lyi{uy,. o)
+(:,:‘“»’f:)Ln(“lydsu)‘?‘{é: '”‘f}}{‘n(“ha(su)‘i' Tt
+E cos wi[L, (. )+ 3 Ly (Us. ou)+ 7L (U5, du) + -]
=88+ &Ly (uy du) + 57 Ly (un, duy+ 3 Ly (us. du) + -
+ 2 cos Ly, (U, 0w)+ &Ly (uy. 0u) + &7 Ly (Uy du) + -] (15
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08 = L\ (ou)+ Ly, (u.du). (16)

Inserting eqns (12) and (15) in the equation of equilibrium (1) the following two equations
are derived. For the steady state part we get

G 08+ 36 Ly (u,. 00 + (5, ~ e, 08+ 26 Ly (uy,0u) + (& —EEa\, - Ly (uy,, Su)

)U:J'554‘5:}&'Ll|(u3x-5u)+(5:-5)§;°’n'Ln(“znéu)
+(§t:_é.:)’:lals.LIl(“l.\"éu)+(’:l}—é})a}x.6§+ r=qrou (17)

+(&7 =8

and for the vibrating state part with the common multiplier . cos wt we get

—(1):A[(u|,.) * (5“‘*‘& * L| 1 (ulw (5u) ‘+‘0'|‘, * (Sé-é,ﬂ)zh{(u:,-) * (Su+é,& * L| i (u:,., 5“)

+(§1"5)0’n'Ll|(“|n5u)+§:°’|.»’Lll(unvfsu)"‘f:"zv'55—512(02/\4(“30) *ou

+&0a Lyiuy,. 0u)+ (S, — S)f:dn Ly (uy. 0u)+ &0y, Ly (uy,, Ou)

+(:l:_52)alv' Lll(ull"(su)_*—‘:l:alr. Ll l(ult-(su)+ét26}t‘ .6E+ = 0 (l8)
It is expected that the sensitivity of the vibration frequency to an imperfection in the
vibration mode represents the most important case. Therefore, we restrict the analysis to
the following case:

Uy, =u, =u, (19)

where uy is the common mode shape. It is noted that eqn (19) only restricts the first-order
part u,, of the imperfection form.

Equations (16)-(19) yicld with du = u, the following two cquations in w and ¢,

Slo- Ly(u) +o, '511“50'1 ‘g +S=l:[&'Lll(ul.nul)+dl “Ly(u) 4oy e]

“55:20'1 'Lu(“z,nun)“ézfﬂzs'Lz(ul)“élﬂ'h’zl+"‘ =0 (20)
and

[—w M(u,) u, +o-Ly(u)+a, e ]+ [6-Li(un,u)+20,° Ly(u)+0,, 8]
—&a, “Ly(u) 476 Lyy(uy u) 40, Ly (uy,u)+6,° Ly (uy,u) 465, Ly(u))
+‘72r'L:(“1)+0x.v"3l]“5€5161 'Lll(uzmul)—ézdlr.Ll(ul)+.” =0 (21)

LA =Ll(u1)+L||(ﬁ.U|) and g, =H(8|). (22)

For the perfect structure in the prebuckling state, eqn (17) reduces to the governing
equation

60t = q-ou. (23)

A variational formulation of the vibrating state of the perfect structure in the prebuckling
state is obtained from eqn (18)

~w;M(u,) du+o,-58+6-L,,(u,,du) =0 24
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where w, denotes the vibration frequency of the perfect structure associated with the mode
u,.

Keeping (11) in mind, and letting du be equal to u,, u.,. u,,. Uy, Uy, ... eqn (24) is
used to simplify eqns (20) and (21) for the static and the vibrating states. which then can
be written as:

static state.

Ye2
3

S:lwp:“/[(ul).ul _56I "+ 30,0 'L:(ul)_'éls:‘al 'L:(ul)—‘fzo':."sl

5

+§i‘[2°'| 'Lll(“::-Ux)‘*‘“:;'[d:(“l)]—fflﬂl 'Ln(“;x-ul)—f

2

é!al‘r ) Ll(ul)

~&loye i+ =00 (25)
vibrating state,

(0);3—602)/"("1)'“1 +3,04 'L:(ul)—s':al 'L:(ul)*'é/:[zﬂ'l 'Lll(“zmul)
+20, L, (u,.u))+0o,," LZ(“I)+011-.Ll(ul)]_:‘i!dl “Ly(uy,uy)

~&a, La(u)+-- =0, (26)

These equations are used to derive simple expressions for the imperfection sensitivity of the
vibration frequencics for nonsymmetric and symmetric structures. A perfect structure will
here be denoted symmetric if the response of the structure is independent of the sign of the
deformations.

2.2. Nonsymumetric structures

Equations (25) and (26) includes an infinite number of terms. To study the effects of
imperfections on the vibration frequency only the terms with the lowest deflection order
will be considered. We neglect the second and higher order deformations, i.e.

u, =0, /=273 ... 27
Using eqns (7) and (13), the following approximation then becomes valid

6,6 = ia, Li(u). (28)
The vibration frequency of the imperfect structure is found in four steps. First the non-
buckled state of equilibrium of the perfect structure a is determined from (23). Then the
vibration mode u, and frequency w, are found from (24). The influence of small imper-
fections on the static mode amplitude paramecter &, is then determined from eqn (25), which

will be rewritten as

= S, = z £ £2
S =l &l —adi=1a &7 =0 (29)

o, & /M(u,) u,
o, Ly(u)/M(u,) u,.

~
l

[

Finally, the vibration frequency of the imperfect structure is found from eqn (26),
rewritten as

N

w =w,f+3(1,§,—a,g:. 30)
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Note that u,, and u,, are not needed in this lowest order approximation. Naturally, higher
order approximations can also be applied. The investigation of vibrations of unloaded
imperfect cylindrical panels by Hui (1984b) represents such a higher order analysis.

2.3. Symmetric structures

For symmetric structures such as straight beams, flat plates and axisymmetric shells
in nonbreathing modes. the nonbuckled state of equilibrium of the perfect structure @ is
also determined from (23). The vibration mode u, and frequency w, are then found from
(24). The influence of small geometrical imperfections on the vibration frequency cannot
be estimated using eqns (29) and (30) since the coefficient a, is zero. In the next
approximation, where second order effects of imperfections are taken into account, u,, and
u,, are needed. We neglect the third and higher order deformations

u, =0, i=3,4,.... 3y
Using eqns (7) and (13), the following approximation then becomes valid
68 =06, L, (uy,u). (32)

Since a change of sign of the amplitudes should not have any consequence in (17) and (18)
when o = 0, the symmetry results in the following equations for u,, and u,,

Gy,°08+0, L) (u,0u)+6°L, (u,,0u) =0 (33)
and
—*M(uy)-Su+a.y, 68+20, L, (u,,0u)+& L, (u,.0u) =0 39

where du is any kinematic admissible deflection ficld.
With eqns (31) and (32), eqns (25) and (26) reduce to

W& — &+ (2b, +52)E = b\ £ — b8 £ —b,E = 0 (39)
and
w? = @) +(2b, +by+2by+b)E —bEE, —b,E? (36)
where
c=a,°¢ /M) u,

bi=a, Ly (uy,u)/M(u,) u,
by =0y Ly(u))/M(u,) u,

by=a,"L,(uy,u,)/M(u,) u,
by=a5°Liy(u))/M(u,) u,.

3. DISCUSSION

In the present theory only one vibration mode is assumed to exist together with an
imperfection in this mode. Many structures have multiple vibration modes, and for these
structures similar equations can be derived by considering the imperfections to be linear
combinations of these modes, as shown for buckling of axially stiffened cylindrical shells
by Byskov and Hutchinson (1977).

Fitch (1968) has derived simple equations for the influence of imperfections on the
buckling load of slender structures. The present equations are concerned with the influence
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2
w ‘ =——— Perfect structure
e imperfect structure

I Reduction according to the theory by Fitch (1968).
2 Reduction according to the present theory.

Fig. 1. Evaluation of the squared frequency and the buckling load of an imperfect structure.

of imperfections on the frequency rather than on the load. Since the present equations are
valid during the loading of the imperfect structure, in principle buckling can also be
investigated with the present equations (see Fig. 1).

It is cmphasized that when evaluating the vibration frequency of an imperfect structure
with the present equations the first and sccond order modes u; and u,, are approximated
with the modes of the perfect structure including the inertia terms corresponding to the
vibration frequency of the perfect structure.

Elishakoll ¢r af. (1987) studies the influence of initial geometric imperfections on
the vibration frequencies of cylindrical pancels. By using the postbuckling coeflicient, sce
Budiansky {1966) and Fitch (1968), together with analytical results for a single degree-of-
freedom structure, they derive simple equations for the imperfection sensitivity of different
pancls. The present theory differs from the approach of ElishakofY et al. (1987) by including
mertia terms in the second order analysis and by including the imperfection in a way so that
also the vibration frequency of the unloaded structure can be investigated. For symmetric
vibrations of unloaded cylindrical panels, the present analysis procedure is similar to the
procedure used by Hui (1984b).

4. EXAMPLES

The theory will now be illustrated by application to three different problems.

First, the vibrations of a beam, which is simply supported and loaded by a forced axial
displucement of one of the supports, are investigated. The governing equations are solved
analytically and the sensitivity of the fundamental vibration frequency to imperfections is
shown graphically.

Then the vibrations of a simply supported plate are investigated. The plate is loaded
in one direction and the edges are assumed to remain straight during loading and vibration.
The governing cquations are solved analytically and the imperfection sensitivity of the
fundamental vibration frequency is shown graphically for a square plate.

Finally, the vibrations of a truncated conical shell are investigated. The edges are
clamped and assumed to move axially during loading. The governing equations are solved
numerically using a finite difference computer program, and the sensitivity of the vibration
frequency to imperfections is derived.

4.1. Application to a beam

A simply supported straight beam of length d and uniform cross-section is loaded by
a forced axial displacement v, of one of the supports (see Fig. 2). We will use the present
approach to study the influence of an initial geometrical imperfection with shape of the
vibration mode on the fundamental vibration frequency.

Let ¢ and w denote the deflections in the axial and transverse directions, respectively
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Fig. 2. A simply supported beam loaded by a forced displacement of one of the supports.

u={v;w} (37)
The generalized strains e arc the strain € and the curvature x approximated by
e = f{ein} = Li(u)+iLy(w) (38)
where

Ll(u) = {v,\r . w._\’.v}
L(w) = {(w,)*;0}. (39)

With egn (5) we find
Ll | (uu' ub) = {Wu,.\‘ Wp el 0} . (40)

The generalized stresses are the tension n and the bending moment m. These are found
from the elastic relation

6= {n;m} = H(e) = {EAc. Elx} 1
where E, A, and I are Young's modulus, cross-sectional area, and moment of inertia,

respectively.
Ignoring axial incrtia the mass operator becomes

M(@u) = pA{0;w}, (42)

where p is the mass density of the beam material.
The boundary conditions can be written as

v(0,0) =w(0,0) =w(d,t) =w_ (0, =w, (d, 1) =0, o(d1)=r, 43)
We will expand v, w, n and m in the perturbational form employed in eqns (9) and (12).

Differential equations for the nonbuckled static state & for the perfect structure are
obtained by inserting expressions (37)-(41) and eqn (16), in (23)
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d
j [EA(C . + (%) ) Be + 9w 0w )+ EDv  dw ] dx =0, (43)
[¢

}
and, using the Euler-Lagrange equations, the following equations are obtained
(EAI00)) =00 —EA@ o7 +100.)7) o+ EDV o = 0. (45)

With the present boundary conditions we find
- Ly "
elv) =—, W(x) =0. (46)

We obtain the following differential equations for the vibration mode u, and the frequency
w, of the perfect beam. again using the Euler-Lagrange equations together with eqn (24)

EA Uy

Elw taxey !
[¢

LU “w:pAwl = Ov Uye = 0. (47)

With the present boundary conditions the solution becomes

o fnx Y . [nx
w (x) =r,sin (71) vi(x) =0, m(x) = ~r,El (d) sin < dA)
. El <n>"+ Ev, (7{)3 48)
“r = pANd pd \d} "~ (48

The radius of gyration r, = \/I/A is arbitrarily chosen to normalize the amplitude.
With (46) and (48) inserted in (33) and (34) we obtain differential equations for the
second order modes u,, and u,, using the Euler-Lagrange equations,

[l‘l\.\' + &(“'l.\'):].v = Ov W, = 0
[UZI'J; + (“.l..\‘)z].,\‘ = Ov W = 0‘ (49)

The present boundary conditions have the property that

il ]
J U o dx = J. Uy dx =0. (50)
0 ]

Now n,, and #,, can be found from (13), (14), (39)-(41), (49) and (50):
EA [4 El{n\

— . L ) R . 2 o | —
Ny = EA[L "..x.x+ 2(“ l.v) ] 2] J:) (“ Lx) dx 4 ((1)

. EA[” . EIf=nY
"y = EA[“B;:X'{"(WL_\‘) } = 7,‘; (“’ I..v) dx = “i' (2) - {51)

It is cmphasized that the stresses n,, and a1, are caused by the axially fixed boundary

condition.
With the gencralized stresses m,, n,,. 1, and the mode shape w, known the coefhicients

in {35) and (36) can be calculated. We set
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4 (a\ ., [nx
Jm.w,‘,dv J;El(‘—i) sin® (-‘—I—)dv EI( )
4 ,{nx T pA\d
j‘pA(n‘) dx j-pA sin® (—-)dx
o d
=0

YEI(nY ., [mx
an,(n ) dx LT(E) sin (——) dx P (E),
d

d
bz = ¥ ) = y T s Z;Z
pA(w;)* dx pA sin? 7 dx

[

b3=0

4 . YEI(nY ., rzx)
L”Zv(“”u) dx j;-z—(g) sin (? dx £l (n)"
1)

b4 = 'd . - o L mx = 2pA 7
pA(w))* dx pAsin® | — | dx
1] (1 d

Then the governing equations for the static mode amplitude normalized with the radius of
gyration ¢, and the normalized vibration frequency w, can be written as

(52)

‘:n(l_P) é+ ‘f 1‘52:0 (53)

and

W} =1=P +3& .}f: (54)

d"u

In these equations, the applied load from the forced displacement v, is normalized with the
critical load of the perfect structure

p = _ L (") (55)
pd

and the frequency w is normalized with the frequency of the unloaded perfect structure

,pA (dY
o} = o %(«) (56)

These results are in full agreement with the results obtained by a two-term Galerkin
approximation described by Elishakoff er al. (1985).

Figure 3 shows graphs of the nondimensional vibration frequency o, versus the load
ratio P, for different values of the imperfection amplitude normalized with the radius of
gyration £. Contour lines for constant amplitude of the normalized static deflection
¢, = & —¢ are shown too. The vibration frequency is significantly raised by the imper-
fections, when the load approaches the critical value. The imperfections also raise the
vibration frequency for zero load. When the beam is in tension the effect of imperfections
becomes negligible for increasing tensile load.

4.2. Application 1o a rectangular plate

A simply supported rectangular plate of sidelengths a and b and thickness h is preloaded
in one direction (see Fig. 4). The supports are assumed free to move in-plane, and the edges
to remain straight.

Let u denote the displacement vector with components in the x, y and z direction
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T T T T

T
-05 0 05 1.0

The generalized strains € are of the form
E= 0 B K LK R = L(u) + L (),

where the lincar part of the strains is approximated by
Loy = 1w e M e ) ow o)

and the bilinear part of the strains is approximated by

Li(u) = {(w)7; (w,)  w ow,0:0:0].

With egn (5) we find that

v . BT » . . . ' B . . < (}!
Lll(uu*uh) = {Hu,\u’h,\ Al Hu,;“h.\ + I](“u.‘“ " +“u,| “h,\) '0 '()'Of'

Hooke's law is used to obtain the generalized stresses

— LAY §
o= n N nmomeom o= Hg)

D
=3 208 +ve,) s 1208, +ve ) D 12(1 = v)eg, s
)

RAK Ry, (K vk, ) (=R

Y

Fig. 4. A simply supported rectangular plate in-plane loaded in one direction.
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(59)

(60)

(61)

(62)
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where v is Poisson’s ratio. and D is the flexural stiffness of the plate

ER®
= 63
b 12(1—v) (63)
[gnoring in-plane inertia. the mass operator M is
M) = ph{0.0;w}. (64)
The boundary conditions for the present problem can be written as
w(x.0) = w(x.h) = w(0,1) =w(a.y) =0
(d (4] h
J‘ ndy = —n,b, j n, dx = J n,dyr=0
0 0 0
v (6, 0) = ¢ (x.b) =u,(0.y) =u,(a.y)=0 (65)

where n,, is the external applied foad to the edges.
Let @ be the Airy stress function for the membrane stresses. When inserting eqns (57)-
(64) in the eqn of cquitibrium (1) the von Karman plate equations can be obtained using

the divergence theorem
ph""ll + DV‘ W= (b'“.il'._‘ 3 + (b.x\ “'.rr - 2(l),.n‘ “'.,\ v (66)

and

IL_IIV"'(I) =W, WL, (67)
The Airy stress function @ and the operator V() are defined by
GO,=n b =n, b, ,=-n,: V(O)=VIV(N:V()=()ut(),. (68)
We will expand the deformations, the strains, and the stresses in accordance with eqns (9)
and (12).

The nonbuckled response a of the perfect plate subjected to the applied toad is found
by inserting eqns (57)-(63) in (23) and using the divergence theorem together with the
boundary conditions. We get the well known result

Mg o M o
Eh’ F, ‘E/x' w = 0. (69)

.=

The following equation is obtained for the mode u, either by inserting (57)-(64) in (24)
and using the divergence theorem, or by sctting u = @+u,; cos w,f in the von Karman
equations

—m,fplm', + DV, =n,w ;. VO, =0. (70)

This gives with the present boundary conditions
u,={0;0;hsin§fsing} (70)
a b
and

SAS 27:1-p
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: Dn‘(l L : 7t 1 )
W, = el e — 3 2
’ ph \a° - Man pha”

where the plate thickness 4 is arbitrarily chosen for normalizing the deflections
The equations governing the static ®,, and vibrating ®., second order Airy stress
functions can be obtained from (33) and (34) by use of the divergence theorem

! 2 (=Y 2nx 2y
Wi —WiaWi, = 5 a~b‘ h cos 7 +COos T

— V., =
Eh =
! . oY 2mx 2y
EV D, = 2w = Wi y) = ((7[3) h- (cos p +cos T) (73)

With the actual boundary conditions the solutions are

Elz“ 2nx 2ny
a*cos —— +h* cos -
a b

o, =
¥ T3

Eh* Inx 2y
‘D 3"’16(’;:/,5(‘“ cos - +hloos 57 ). (74)

Now the cocflicients in (35) and (36) can be calculated :
J J [y ooy b owy o 2 o T dedy

j J ph(w )" dx dy
D’ + 2 + ! 2 G _7"005 o 'V dxd
. Vs in® - sin’ iy oy - cos” xday
b 0 Jun llwl (l~b- b s « > b - b a :

= (b
, Y
ph' sin® —-sin? d\ dy
a Jo a

|

=0
>
P&
<
ISR -
IS A,
+

S——]

O

b, =
J‘ J< [(D ns(”’l ) +(D‘\r\(“l|) ]d\dl'

b: _ ”. . . -
JJ;)/}(h,) dedy
27t,\' ) X

2 B Y B st sin? 2 ! “~sin? ~-cos® - Jd\dl
V 8 0 Jo o0 h co a S b /74 a u h

a
phsin? “sin? ™ d dy
o Jo a h

. A 1\Dn*
=4(l"‘ ) n’.“‘l"b [)/[

hJ:O
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j J‘ [(D ryy ( Wiy } : + (Dlr-rx (W l.,v) :] dx d}.

b" = e
J J ph(w)* dxdy
0 JO
Er'n* [“["1 =1 2y ,nx . ,my -l—c ansinszcoszny dedy
ol O N T C0s = c0s® —-sin® - — pgcos — p; 5 |dxd)
- [t JTX ny
h" - 2L . :‘—'— ; N
L _Lp sin” — sm b dx dy
1 1\ Dn*
= Hl v =+ — | . 75
-{1 4 )(Gi +£’J) ph ( )

The governing equations for static deflection (35) and vibration frequency (36) then become

| a*¥ . .3 N 2 W
3(1 + ;;) =8 —-Ps+ *{g(l -v7) (l + 5‘:{)@3-?) =0 (76)
and
o1 a*V 3 N 72 W
W, = 4(1 + f):) -P.+ ‘“6“ -v) (l + 5,;)(3%.-‘;’)‘ n
where
. 4
" T apr
3 , \ 3
w? = "‘% (g) W, (78)

The result is identical to the result found by Hui and Leissa (1983).
Figure 5 shows the nondimensional vibration frequency w, of a square plate as a
function of the uniaxially load ratio P, for different values of the imperfection amplitude
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Fig. 5. Vibration frequency of an imperfect square plate.
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Frg. 6. The chimped truncated conical shell.

normalized with the plate thickness £ Contour lines show the corresponding amplitudes ol
the normatized static deflection & = &, =&, The effect of impertections shows the same
trends as was seen for o beam.

I is noted that the neglect of third and higher order terms, eqn (31), is not valid
for large buckling amplitudes. Hanko and Dickinson (1987a) have applied a Rayleigh Ritz
procedure to the present problem. They show that the effect of higher order terms becomes
important when the amplitude of the buckling mode become larger thun about three times
the plate thickness. Their theoretical results are validated experimentally, see Hanko and
Dickinson (1987b).

4.3, dpplication 1o a truncated conical shell

A truncated conical shell, cliamped in both ends, is considered (see Fig. 6). The ends
can move in the axial direction during static loading. The present theory will be used to
study the influence of an initial geometrical imperfection with shape of a vibration mode
on the vibration frequency assoctated with this mode. For this purpose a finite difference
computer program for general analysis of axisymmetric shells with a nonlincar prebuckling
state has been adjusted to cover the present theory. This computer program has been
described and applied to buckling off LNG spheres by Pedersen and Jensen (1976). In the
special case of axisymmetric loading, the numerical procedures in the computer program
are, apart from the inertia terms, wdentical to the procedure in the computerized buckling
and postbuckling analysis of spherical caps described by Fitch (1968). In the same reference,
detailed information on the interpretation of the tensor terms in the governing equations
and coetlicients ¢ian be found in casce of axisymmetric shells.

The geometry and material propertics of the shell are the same as considered in Tani
{1974). The semi-vertex angle f = 20 | the smaller end radius r = S4.1 mm. the larger end
radius R = 124 mm. and the shell thickness & = 0.050 mm. The mass density of the shell
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c.wiw?} 10%ee)?

Squared frequency for imperfect shell according to the present theory.
x Buckling load for imperfect shell according to the theory by Fitch (1968).

Fig. 7. Squared vibration frequencies of perfect and imperfect shells and the coeflicient ¢.

material p = 8310 kg m ', Youngs modulus £ =206 GN m * and the Poisson ratio
v =0.30.

The results from the calculations are shown in Figs 7 and §. The square of the frequency
of the perfect structure o] is shown in Fig. 7. The mode with a circumferential wave number
n, = 6 has the lowest vibration frequency at applied axial loads up to £ = 163 kN. At this
load the lowest frequency mode changes to n, = 9, which also becomes the buckling mode
at the load P = 166 kN. The vibration mode for £ = 0, and the buckling mode are shown
in Ig. 9. The amplitude of u, is normalized with the shell thickness and the coetlicients ¢,
by, by, by and byin (35) and (36) are calculated. The coetlicient ¢ is shown in Fig. 7. It is
noted that ¢ represents the square vibration frequency in mode v, for the unloaded shell.
The variation of ¢ with the applied axial load is caused by the variation of the mode shape
u, with the toad. The coetlicients by, by, byand by are shown in Figure 8. All these coetlicients
vary smoothly with the load up to £ = 155 kN. Above this load the coctlicients and the
lowest frequency mode shape changes rapidly with the load, and in this region the present

Dbyt 108. (19¢y?

] b
—-2.0- “

] by
-25]

Fig. 8. The coefficients b, b, b, and b, as functions of the applied load P.
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Fig. 9. Vibration mode for the unloaded shell and the buckling mode.

theory is not suitable for estimating the influence of the imperfection on the vibration
frequency.

The coeflicients ¢, by, by, by and by together with the vibration frequency of the perfict
structure m, are inserted in the eqns (33) and (34). From these equations are calculated
frequencies shown in Fig. 7 for different amplitudes of &, the imperfection amplitude
normalized with the shell thickness A Punctuation of the curves indicates that the theory
is restricted to moderate reductions in the frequency. We see that the imperfections lower
the vibration frequency significantly, and that this effect becomes more pronounced for
higher loads.

Fitch (1968) uses the following cquation to estimate the influence of an initial geometric
imperfection with shape of the buckling mode on the buckling load of u symmetric structure
with negative value of the postbuckling coctlicient b

FRNCIEE N5 B )
(1‘-,2') =--2~-~;‘,;x\,/—b(&). (79)

In the equation, #, 4. and 4, denote the nonlinearity coefticient of the prebuckling state,
and the critical toad of the imperfect and perfect structure, respectively. The cquation is
asymptotically correct for small values of &, the amplitude of the imperfection normalized
with the shell thickness,

For the present shell, the coeflicients « and b are caleulated numerically using the
method described in Fitch (1968) and in Pedersen and Jensen (1976), We find

2 =0.57
b= —0.83. {80

These values are inserted in eqn (79) to obtain the results also shown in Fig. 7. We see that
also the buckling load can be seriously lowered by imperfections. A direct comparison of
the two theories is not possible, since they apply different mode shapes for the present shell

It is noted that both the present theory and eqn (79) imply that the vibration frequency
or the buckling load corresponds to a unique deflection mode shape. For the present case,
scveral eigenfrequencies can be found in the closeness of the lowest. Furthermore, the
nonlincar static response of the perfect structure shows limit load behavior at a load which
is a few per cent higher than the lowest bifurcation load. The validity of the results are
therefore questionable, but they are at least believed to be representative for the vibration
behaviour of imperfect shells.
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5. CONCLUSION

A theory for the analysis of the effect of initial geometric imperfections on the vibration
behaviour of undamped, conservatively loaded, linear elastic beam and shell structures is
presented. The theory is restricted to structures where the imperfections are of the same
shape as the vibration mode. Simple equations are derived for nonsymmetric and symmetric
structures.

The theory is illustrated by application to analysis of vibrations of a beam, a rectangular
plate, and a truncated conical shell. The results show that the vibration frequency of a beam
or a plate may be significantly raised by geometrical imperfections. This has previously
been found also by other investigators. On the other hand, the numerical results show that
the vibration frequency for a truncated conical shell may be significantly lowered due to
geometrical imperfections.

Even though the theory is restricted to geometrical imperfections with the same shape
as the vibration mode. the results will be representative for other shapes and types of
imperfections.
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